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ABSTRACT
The approach to Gaussianity of the output y(t) of a2 narrow-band
system h(t) is investigated. It is assumed that the input x {t) is an

a~-dependent process in the sense that the random variables x(t) and )~c(t+u)

are independent for u> a . With F(y) and G(y) the distribution function
of Y(t) and of a suitable normal process, a realistic bound B of the differ-
ence F(y) - G(v) is determined and it is shown that B ~ 0 as the band-
width W of the system tends to zero. In the special case of the shot noise

process

7= ) hie-ty)

1

it is shown that

e

where )\ is the average density of the Poisson points t i

| Fiy) - Gty)

1. Introduction INTRODUCTION

In the engineering applications of random signals it is often
assumed that if a stationary process §(t) is the input to a linear system,

then the resulting response

-]

y(t) = f f(t-a) h(a)d a 1)

*ends to a normal process as the bandwidth w, of the system tends to zero.
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This theorem is not always true as one can show with a trivial counter

m..
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o appiy

example. However, it holds under fairiy general conditions. it
meaaingfully, we need to establish not only conditions for its asymptotic
validity, but also realistic bounds for the deviation of y(t) from Gaussianity
for a given w + 0.

As one might expect from the central iimit theorem, Z(t) will
approach Gaussianity if the past x(u), u =t of the process x(t)is "almost"
independent of its future x{u), u>t + T for sufficiently large T. This
loose requirement is precisely formulated in Rosenblatt's classic paper [1]
as follows:

Let ]':st and FT be the Borel fields generated by the random
variables X (u) fur u<t and u>t+ T respectively. We 32y that the

process x({t) satisfies the strong mixing condition if there is a function

g({a) with

0< g(a)‘O as (o (2)

such that for any pair of events Be€B, F¢€ F.

| P(BF) - P(B) P(F) | <glr) (3)

Assuming further that the moments of x(t) of order up to four exist and

satisfy certain conditions and that its power spectrum S(®w) is such that
Sw) > 0 (4)

he shows that the output v(t) of a certain class of filters tends to

Gaussianity.

In applying Rosenblatt's result, we are faced with the problem of
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testing the mixing condition (3), Furthermore, the problem of establishing
realistic bounde for the distance of y(t) from Gaussianity remains. In this
paper we shall overcome these difficulties but only at the sacrifice of gener-
ality. We shall base our analysis on the assumption that the process x(t)
is a-dependent, i.e., that the events B and F are independent for T>a .

This assumgtion is equivalent to the condition
gla) =0 for a>a (5)

The above is, of course, more restrictive than (2), however, it holds in
many applications and can be often readily established. Suppose, for
example, that x(t) is the output of 2 memory-less non-linear system with
input a norm al process s (t). In this case, condition (5) is equivalent to the
assumption that the autocovariance C(r) of s (t) vanishes for T>a.

2. The Berry-Esseeh Theorem

The output y(t) of our system is a linear combination of a non-
countable infinity of dependent random variables, As we show in section 5,

if the input x(t) is a-dependent, then the principal part of y{t) can be

_expressed as a sum of independent random variables. To solve our problem

we shall need, therefore, a bound of the deviation of such a sum from
Gaussianity. Such a bound is given in the following important theorem due
to A.C. Berry and G. Esseén [2,3]. We present it here for easy reference
and also because in the proof we make use of a useful lemma (Appendix A)
which is an improvement of the corresponding lemma 1 in Feller [2, p. 510].
Wi.h its help, we obtain the constant 4 in (8), whereas, the corresponding
constant in Feller is 33/4. However, as it is stated in [ 2], unpublished
calculations mention the constant 2.9 (Esse%n, 1956) and 2. 05 (Wallace,1958),

Consider a sequence Xy Xy 0 of independent r.v. (random
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variables) such that

5 - . FAY .2 ) 13,
<.} = Lt=g 7, 1Ix. = ¢,
E“flj 0, E‘t§1 ¢ BRI e
We form the sum
x =—1—$x. where 02 = yo.2< @ (6)
~ 0 L ~1 L0
i i

Clearly, E {x%}=1. With F(x) the distribution function of x and

X
2
f ey /2 dy ()

1
A 21 -

that of a normal r.v. with the same mean and variance, we wish to bound

G(x) =

the "'distance” lF(x) - G(x) \ of x from Gaussianity.

Theorem. If

then
| Fix) - Gy | < 4% (8)

Proof, With §i(w) and ¥(w) the characteristic functions of the r.v. X and

1
x respectively, we conclude from (6) and the independence of the X, 8 that

- 4 (@) 5,0

As we see from (B-6)

2 2 3
g. W > C.
3 2
5+ 8 57 e 1 9%
@i(w)z e , {w‘f_-z—ff‘z'zl— (10)

(throughout the paper the letter 8 will always be such that |6 lf 1),

heace,
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w= 5 w w F)\ 2
3 i 2401 v — |w]
, s w) = o 21 03 i i 2 2la ) \w‘<_§x a1)
because
Z c.
il <M % < A
ax.—-—-
. 50,2 0.2~
i 1 i
But for any =z
 e2-1 I 2 | 2|
< P P Ty PR P O a2)
hence,
_wi e osen el
tw-e 2 ]<e 2]e?® -1‘5
o}
\w!.’:’ﬁ
___[ 10\ lw l] wz
3 “)\ 3 74

We now introduce a function r(x) as in (A-1) with Fourier trans-

form R(w) such that

R(w) = 0 for lw|> w = %’X (14)
As we see from (A-1)
iR | <R =1 1s)
‘ The transform of the convolution
| glx) = [ Fix) - G(x) ] * r(x) 16)
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is given by [4]

2/
- 2
$(w) - e w .
jo R(w)
hence,
. | w’ 2/ . UJI
. ¢ - -w/2 : . 2
n =f [ 2@-e "~ A -wYa
27 ig(x;‘-lJ; )=e R(v) a9 < % .wze‘”/ dw
i~ ™ ] e
- .
. . 2 A
5A 2 ~W /4 _ 5\ , =
<‘2—10‘ w- e . dn = ZT?(A"/"
. o _
Thus
A
Agto | £ 222
rALN
Since

2 .
G'(x) = 1 e /25 ——_];_
o 2m T J2m
we conclude from (17) and {A-15) that i
. [
|Fe0 - 6o | < vy 5

where the constant Y. is such that

Y 1 1
J\r(x)dx=%-+24§;—%

0

We now choose for ri{x) the Fejt‘ar kernel [4]
1x/ 2)

™ ml xZ/Z

sin2 (w

r(x) =

whose transform is a triangle satisfying (14). And with

6

(17)

(18)

19)

(20)

e

WSAAEAAAL S YA BT (rr0d Wos £ s




o

we conclude that

| Fe) - G | < 2 2 w

where w is such that

o2
?'I_J' suzxx dx=-3l+ 5
0 X 126./2 w

Solving we find

w1, 26

-

Inserting into (22) we obtain (8).

Corollary. If the r.v. z, are independent with

E{z}=0 , E {z.%}=o%, E{Izi|3}5c

~1
and
. 2_ 2
z=Foqz . lelca o vase
then
Pe) - G (35)| < 4 A
ao

The above follows from (8) with X, = ai z; -

3. Systems driven by un impulse train

-

Consider a band-limited system with energy E

o

E= | v ae Hp)=0  for lwl>uw

-

(21)

(22)

(23)

(24)

(25)

(26)




As it is known [5],

/ Ew -

o 2 E
|h(t)\§\/ e Eh(t-nT):—,f,- for T<‘”—o

ns -®

With z ~a sequence of r.v. as in (24) we form the impulse train

(27)

T .
3 x(t) = Z 2z, §(t-nT) T<g- (28)
3 m ©
@
If x(t) is the input to our system, then the resulting output is given by
] y&) =) z_h(t-nT) (29)
3 n
3 Clearly,
; F {y@)=0 E{Z(t)}=cz-E°2
yw=0 y'®w ) =0’ - 25
With F(y) the distribation function of y(t), it follows from (25) and (27)
s that
Tw
; -g(XL) <4 [ o
: Fly) - G (Oy) <%= (30)

From the above it follows that v(t) tends to Gaussianity with w, " 0.

~

e

X ore

4. Shot noise

Consider the random points t . of a Poisson prccess with average

‘ .
© B vl i

density A . If the sequence of impulses

e
Peew

x (t) =Z & (t-t ) (31)

n

is the input to our system, then the resulting output




y(©) = ) hit-t ) (32)

=]

is the familiar shot noise process [ 6, 7] . As it is known, the characteristic

function Qo(u)) of y(t) is given by {8, p. 567]
m -
xf [eI¥B(t) 1 at

Qo w)=e - (33)

and its mean 1 and variance 02 by (Campbell's theorem [8, p.569])

f.=xf hit) at o = xf hl@)dt = A E (34)

To simplify notations we shall consider the normalized process

y(t) - n
s(t) = — (35)
whose mean is zero, variance one, and characteristic function
-j %_‘”. u
tw=e % 2 (2 (36)

With F(s) the distribution function of 8 (t) we shall show that

w
|Fs) - Gls) | < &2 52 (37)

Proof. Since [see (B-6)]

. 2 3,3
e]wh(t)=1 -j whit) - wzlzl {t) } Q(t)w l; (tl_: ‘ e(t)‘f. 1 (38)

we conclude from (33) and (36) that all w

2
’ -—w-—+BBm3
dw)=e

e YLD e i)

2 fei<1 (39)
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where
3
XJ; |het)|” at .
B=s — <z J7c (40)
— 6 L
623 &3

because [see (27)]

i lhey |3 at < /-—E—°fh2(t) dt = E,[—=2 (41)

-0 -

From {39) and (12) we obtain

2
o8w> l 2. B\wl3
-1

w2
2 2
-w /2‘ e 2 < B|w‘3e 2

! 3 (w)-e e 42)

valid for all w. With € <1 a constant to be soon determined, we observe

that
w? 3 | 1 1
-5 +8lul <.2€2 for ,wlfz—a-(l--e—z-)= ®) (43)
hence,
u)2
2
la(w)- "”/Zl <glolPe?® |, Jul< wy (44)
We now proceed as in section 2: with r(x) and g(x) as in (16), we
have
w w
' $(w) -e“”z/?‘ | ', -w%/2 €2 2
2ﬂlg(x)|= J. m R(w) dw) < 8 f w'e dw<Bes/2n
-% _ -9

Therefore, [ see (17) to (23)]

10
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e | < & (45)

T J2n

and

| Flx) - G | < -f;l‘f—f%- .88 < (46)

where w is such that

w
2 5 2
_lj sin x _1  €e(e”-1)
md T2 T3 toaw (47
0

It remains to solve (47) for w as a function of €, and find € such as to
minimize (46). We find that the optimum € and the corresponding w are
given by

€ >3 wa~ 1,9

Ins.rting into (46) we obtain (37). The bound (44) yields

1
, lw‘<-3-3—

2/, 2
$ (w) - e-u) 7o <8 “”P e-w /6
The value of € is not critical.

5. Band-limited systems with a-dependent inputs

Consider a stationary process with zero mean, autocorrelation
R(T), and power spectrum S(w)

Ef{x(t)j=0, R@r)=E {xt+m) x(t)} <—>S(w) (48)

We shall assume that x(t) is a-dependent [10] as defined in section 1.

From the definition it follows that if the instances tr and 'cs are such

11




vy

3
=

.
(224,

.~ -"A»-"‘

that

max t_+a< min t
I S
r S

then the r, v. ?f(tr) and x(ts) are independent, Hence,

a
R(t)=C for |r|>a, S(O):fR(T)dT

-a

We define the constant o by

a
alTur l* | R(T) dT= asS{0)
-a

It is easy to see that a<1.

In this section we shall bound the deviation of the output y(t) of our

system (26) in terms of the above quantities and the third absolute moment

E{lx®))’} = ¢

of the input x (t).

For this purpose, we express the impulse response h(t) of our

system as a sum (Fig. 1)

hit) = h{t) + € (t)

of a staircase function

R(t) =h@T) (n-3) T<t<@+3)T
and an error term €(t), where T is such that

za<T<;”'-'— T= a+hb

(o)

12

{49)

(50)

(51)

(52)

(53)

(54)

(55)

;L
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Ve next form the r.v.

H 1
(n-E)T+B (n+-2')T
En = f lt(t-(l) da Vlln = I 3_:(1:-(1) do
(n-3) T (-21T+b

and

27 ) bz, w= ) hoT) w,
n n

As we see from (53), the output y(t) of the system is given by

©

y(t) = I'ﬂ(a)ic(t-u)da+g

~

- D

where

-]

e = J. E(a)§(t-a)da

-C0

From the above it follows that
yt)=z+wie

As we shall presently see, if
a<<T<<1-r/wo

then the dominant term in (60) is the r.v. 2z

(56)

(57)

(58)

(59)

(60)

(61)

From (56) and (57) and the stationarity of x {t) it follows that

[9 p.346 ]

14

i S et e

[P



"

R R i e e e S T e e R e e e

E{fn":' s , E{VNV'n}=C
Fa
E {_gn2}= b | R(r) [1--‘-%—‘]&:5(0) @-ag)b (62)
-a
a
E {y_vnz} =af R(T)[l--‘%‘-]d'r = S(0)(1-0a)a {63)
-a
bbb
3 [
E{lz, 1"V < )] E{x(a)x@,)x(;) [1de, da, doy (64)
000
But
B {lxyz! <E (=’ E{ly 1Y £ (1217 (65)

as one can show from Hélder's inequality, hence, [ see (52)]

E{lz, 1’1 <v’c (66)

From the a-depeandence of x(t) it follows that the r.v. z_ are independent,

o~

‘hence, [ see (27)]

2 2 2 2 E a
o, =E{§}=$_‘h (nT)E{fn}=-1-,S(0)(1-a3)b (67)

n

[Ew

But |h(nT)I < J "0 , therefore, [see (25) and (68)]

- o (2)

< a % Ju, (68)
z .

where

15
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3
A - 4 c (69)
Jrs30) 4 - |alasm)’
The r.v. w, are also independent, hence, .
2 _ 2y _ V.2 27 _ 2a .
o =E{wl= ) reDE{w }=EASF (79)
n
where
2
AZ = §(0) (1-a) (71)
From (59) it follows that {9, p.3456)]
a
2 J' . Za
0." < n(0) Rlalda< E.2aR(0)<E A" & (72)
-a
where
2 _ 1 3 2
A" = ZR(0) T  w (73)
Trom the above it follows that
2 ! 2 _ 2a
El{(wt+e)} <(o +0,)"=E@A,+A) % (74)

The constant T is still to be determined. If it is small, then

the bound in {68) is small, however, the variance of the term w+ e is
large. To account for its effect on the distribution Fy(y) of y(t) [see (62)]

we shail use the bound D-3) in Appendix D. As we see from (74) and (67)

16
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E{(w+e)l E(a,a,°3
< -

5 < = A, 2 (75)
E {z°%) E 5(0)1-a.a/b)

where

) (A2+A3)2 (b+a)
4=75_(b-0a)

A (76)

We note that the quantities Al’ A, and A 4 are essentially indepen-
dent of the systemn. Furthermore, the final result is useful only if wo is so

small that a <<T << "/wu . In this case, A3 <<A b= T and A, is

Z)
close to unity.
From (75), (68), {60), and (D-4) it follows that

3

ot o B AR 2 { 2_ -
’Fy(y, G(ao)l <4T ,,/mo +1.03,/ Ay+ (77)

Choosing T so as to mirimize the above, we finally obtain

7 _
< z\/ A A42a‘ﬁ‘ {73)

(o]

-G (X
F v G("o)

TI'rom the preceding discussion it follows that if the input to a

band-limited system is an a-dependeat process such that

E{Ix1>] <= and s@© 0

then the resulting cutput tends to Gaussianity with w, =0,

17
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Appendix A

A useful lemma. Given an even non-negative function r(x) of vunit area

-]

dr rix)dx =1, r(-x) = rix}), rx)>0" '(A-l)

-0

' and a differentiable function o® (x.) such- that
P(x=)=0, o'(x)> - A<GC (A-2)

we form the convolution integral

©

go) = | ©(5) rix-€) dE= @) * rix) L (a3

1 -0

We maintain that if

letx)| < B (A-4)

then {9, 11,12]

lotx) | < 24y (A-5)

where ¥ is such that
Y

P B _

.
Jr(x)dx-3+6AY
0

(A-~6)

Proof. Suppose that the maximum of ®(x) equals C . Without loss of gener-

ality we can assume that this maximum is reached at % = 0. Thus
ls i< o] =c (A-7)

Consider first the caze @(0} > 0, Clearly,

18
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Hence,
Px)>C- Ax (A-8)
Furthermore,
0 2x o
{ $
g = [+ [+ | 0@ rxgac
~-® 0 2x

From (A-8) and the evenness of r{x) it follows with x - € = y that

2x 2x x
[ w©) rx-2) 2> | (C-42) rx-2) ag= 2 [c-ax] [ rey) ay
0 0 0
But
0 = 0 = x ‘]
[+ [o@ r-graz<c [.f+ J xx-s) dﬁ] = C{“—f"y’ dy
- 23 -© 2x 0 4
Hence,
X
g(x) > [ 4C-2Ax] J r(y) dy - C
0
"Letting
=5 -
x=5% (A-9)

in (A-9) we conclude with (A-4) that

C/2A
B>3c | rgydy-c (A-10)
0

If our assertion (A-5) is not true then

@0 =C>2AY (A-11)

19
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But this leads to a contradiction because then (A-10) would yield [ see (A-6)]

Y
B33cfr(y)dy=2—%3(>3
0

hence, (A-4) is true.

The case ®(0) < 0 can be reduced to the above. Indeed. with
®(x) = -0 (-x), gx) =0k *r (x)
we have
o ) =o' (-x) g x =glx)
hence,
lo,) | < oy @>0, |gx)|<B

From the above it follows that ‘cpl(x) l < 2A Y and the pro.of of the theorem

is thus complete.

Corollary. Consider two distribution functions Fl(x), Fz(x) and a function

r(x) satisfying (A-1). With

gx) = [ Fy(x) - F,(x)] * r(x) (A-12)

we maintain that if

F,'x) < A (A-13)
and

lg)|< B (A-14)
then

| Py - Fol<2Ay (A-15)
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where Y is as in (A-6),

Proof. With

© (X) = Fl(x) - Fz(x)
we have 9(f®) = 0. Furthermore,
¢p(x)>C- Ax

as we see from (A-13) and the monotonicity of F1 (x). The desired bound

(A-15) follows as in the lemma.

Appendix B

Consider a random variable x such that
E{x}=0, E{x}-0% E{|x]’}=c (B-1)

Fith f(x) its density function and

8 () = ~ff(x) JUX gy (B-2)

the corresponding characteristic function, we maintiin that for all w

2.2
g (w)-1} <272 (B-3)

2 2 3

W q W c
(e -1- > 2 (B-4)

and
2 2
_ozw +6—52% |wl3 GZ

dw)=e for ‘wl<—2—é (B-5)
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As it is known [ 2, 13]

. 2.2
erx=1+ij+el-q%’-‘—— , te,l<1
. 2 3.3
erx:1+ij_w2x +92u6x . 18,1<

Inserting into (B-2) we obtain (B-3) and (B-4).

From the expansion

-log(l-z)=z+%+-z3—+-u lz|<l

it follows with z=1-8 (W) th tif |1-8 W) |<1, then
[ 2]

“log {1- [1-2@)]}=[1-8@]+) 2[1-8@)"

n=2
hence,
o
2.2
1 2 2 w”eo Z 1
logi(w)+zw o} <{¥(w)-1- > + o 1-8(w)
n=2
As it is known, 03_<_ c ; hence, for
. g 1
lol< 3z <5
2 2
j1-8(w Ingc Er<-§
Therefore,
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n=2

and { see (B-6), (B-9) and (B-4)]

TRV

e

| 2.2 3
log Q(w)+w20 clwl

4
W 5¢c 3
6 7 <7 vl (B-11)

from which (B-5) follows,

Appendix C
In the decomposition

hit) = h(t) + € (t) (C-1)

of Fig. 1, the transform H(w) of h(t) is given by [14]

2 B?lf‘u‘,‘”T/z) ) Hw+2T g (C-2)

n

HWw) =

(Fig. 2) and its energy [15, p. 122] by

“ { - I_ﬁz(t)dt =TZ h? (aT) = © (C-3)
£ J -

We shall show that

E-Ie(t)dt<ﬁ Tzwz (C-4)

Proof. Since H(W = 0 for |w lZ w, we conclude from Parseval's

formula that
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w

= . N o
[ e h . H 0 U 2 2sin(wT/2)
[nrBe = [HOT o) -4 | |He|2 20012 o)
- - -w
o
hence,
© wo
E€= J[h(t)-h (t)] dt = T f lH(w)\ [l _ S]$T! / )] dw
-0 w
o
But
| sinx - x ‘ < %
hence
E <_Ii J‘wowz ‘H(W)‘zdm < E Tzw 2
e— 24n - 12 o
-
o

Appendi» D
The r.v. x is such that E {?f} =0, E {3;2} =1, With F(x) its

distribution function, w issume that [ see (7)]
| F(x) - G(x)l <3d for all x (D-1)

The r. v, y is such that

2

E{y}=0 Ef{lyll=d E{;%1=0 (D-2)

We form the sum

z=x+z

With Fz(z) the distribution function of z we shall show that:
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a) If the r,v. X and y are independent, then

| F (2) - Gla) | < 8+ 2= (D-3)
2m

b) In any case,

3
| F,(z) - G| <8+10340° (D-4)

Proof. a) With fy(y) the density of Y it follows from the independence

of x and y that

F,(z) - fw Fla-g) £, () d € (D-5)
hence,
F,(2) - Glz) = f[ F(z-§) - G(z-8) + G(2-5) - G(z) ] £ (5) d§ (D-6)
But

| G(z-2) - G(z)| = | G' (z-8%) 5| < % (D-7)
therefore,
| F,(z) - Glz) |< 8+ 21" mfwl; l£(5) a5 = 8+ %

and (D-3) follows because M, < ¢.
b) Fz(z) equals the probability masses in the region x + y < z of the x-y
plane, With £ a constant to be soon determined, we see that

F(z-€) - P {y>€} < F (z) <F(z+€) + P {y <- €] (D-8)
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G(z-€) - 6- P {y>€}~ G(z) <F,(2) - G(z) <G{z+€) + 0+ P {y<-e}-

and [ see (D-7)]

c+p{lyj>el

|7 () - Gl2) [< 8+
FAl

It remains to select € so as to minimize the above bound. From

Tchebycheff's inequality we have [9, p. 150]
0,2
Pllyl>el < 2

hence,

o

e ¢

1+ =
AJ2an

le(Z) - Glz) | <8+ 3

(4]

This quantity is minimum for

‘Inserting into (D-10) we obtain (D-4).

If the variance of x is not one but Oxz, then

3
, 2
< &+ _2..1.2__2
7 8mo
X

This follows readily from (D-4) by a simple scaling.

F(x) - G(E’::-)
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